

High-Performance Lossless Compression Core

General Description

Lossless data compression is a class of data compression algorithms that allows the exact original data to be reconstructed from the compressed data.

LZR2 implements the lossless compression /decompression algorithm. Typical applications include enterprise data storage.

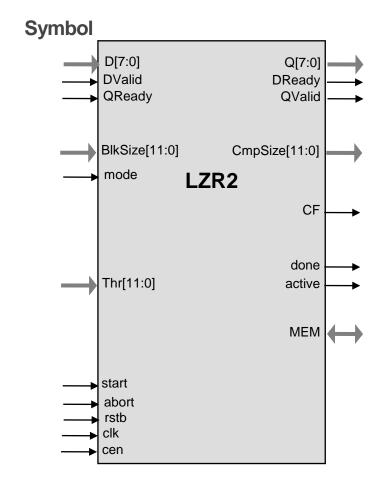
The design is fully synchronous and available in multiple configurations varying in bus widths and throughput.

LZR2 delivers sustained (gapless) throughput of 8 bits per clock on the decompressed side or about 1-2.5 Gbps of throughput in FPGA and 4-6 Gbps in ASIC implementations. The compression ratio greatly depends on the data and somewhat depends on the frames size; on typical file corpuses varies between 1.5 and 2.

Key Features

Each frame is compressed and decompressed independently

Compatibility with public-domain LZ software implementations allows for interoperability


Parameterizable maximum block size

Support for compression and decompression in a single core; dedicates compression and decompression versions are available

Back-to-back compression with no gaps between the frames

Applications

- High-performance solid-state storage
- Disk and tape storage systems

High-Performance Lossless Compression Core

Pin Description

Name	Туре	Description	
clk	Input	Core clock signal	
abort	Input	HIGH level synchronously resets the core	
rstb	Input	LOW level asynchronously resets the core	
cen	Input	Clock enable	
mode	Input	LOW level for compression/encryption, HIGH for decryption/decompression operation	
CDbypass	Input	HIGH level indicates a bypass of the compression/decompression function	
EDbypass	Input	HIGH level indicates a bypass of the encryption/decryption function	
estimate	Input	HIGH level indicates suppression of the compressed data (Cout).	
Cin[31:0]	Input	Input data bus for compression/encryption	
CinValid	Input	Data on Cin is valid	
CinReady	Output	Core is ready to accept data on Cin	
Cout[7:0]	Output	Output data bus for results of compression/encryption	
CoutReady	Input	Core can drive data on Cout	
CoutValid	Output	Data on Cout is valid	
Din[7:0]	Input	Input data bus for decryption/decompression	
DinValid	Input	Data on Din is valid	
DinReady	Output	Core is ready to accept data on Din	
Dout[31:0]	Output	Output data bus for results of decryption/decompression	
DoutReady	Input	Core can drive data on Dout	
DoutValid	Output	Data on Dout is valid	
BlkSize[23:0]	Input	Input data length in bytes minus 1	
CmpSize[24:0]	Output	Output data length in bytes minus 1	
start	Input	A HIGH pulse starts the new block	
done	Output	A HIGH pulse indicates the completion of the block processing	
active	Output	A HIGH level indicates the core is busy processing the block	
K1[255:0]	Input	128/256-bit AES key. 128-bit key resides in the MSB of this port.	
K2[255:0]	Input	128/256-bit tweak key (K ₂). 128-bit key resides in the MSB of this port.	
key256	Input	When HIGH, the K1 and K2 are 256-bit wide. When low, the keys are 128-bit wide.	
IV[127:0]	Input	Initial counter value (location)	
MEM		Memory interface	

LZR2 Core

High-Performance Lossless Compression Core

Function Description

The core implements lossless compression / decompression and encryption / decryption of data blocks from 512 bytes up to 4096 bytes (longer lengths can be configured).

Performance

On the Calgary corpus with the 4096-byte block the core exhibits the following performance:

File	Compression ratio	File	Compression ratio
bib	1.56 (64.22%)	paper3	1.49 (66.93%)
book1	1.39 (71.97%)	paper4	1.54 (64.83%)
book2	1.58 (63.10%)	paper5	1.59 (62.97%)
geo	1.13 (88.52%)	paper6	1.64 (60.88%)
news	1.51 (66.05%)	pic	4.08 (24.52%)
obj1	1.60 (62.70%)	progc	1.74 (57.59%)
obj2	1.83 (54.53%)	progl	2.13 (46.84%)
paper1	1.61 (62.02%)	progp	2.13 (47.00%)
paper2	1.54 (65.11%)	trans	1.93 (51.73%)

Deliverables

HDL Source Licenses

- Synthesizable Verilog RTL source code
- Verilog testbench (self-checking)
- · Vectors for the testbench
- Expected results
- User Documentation

Contact Information

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 815-7996 E-mail: info@ipcores.com

www.ipcores.com