

General Description

Implementation of the new LAN security standard IEEE 802.1ae (MACsec) requires the NIST standard AES cipher in the GCM mode for encryption and message authentication, as well as header parsing and formatting operations on the transmitted and received packets. The MSP1-PON core is tuned for Passive Optics Networks (PON) IEEE 802.1ae applications at the data rates of 10-100 Gbps.

The design is fully synchronous and available in both source and netlist form.

Key Features

Small size combined with high performance:

- Starting at less than 180K ASIC gates
- 16 Gbps performance at 250 MHz with 180K gates

Self-contained, uses two external memories for key storage and statistic counters

Very low latency

• 12 clocks input-to-output

Back-to-back packet processing

• 64 bytes shortest packet

Supports encryption and decryption

Provides MACsec header parsing and modification:

- Insertion and removal of the SecTag including the packet number (PN) and an optional SCI
- RX packet validation
- Insertion, validation and removal of the ICV
- Replay protection based on the PN windowing

Includes key storage, lookup, and expansion

- Key lookup is based on LLID (other option of packet classifications are available)
- Ability to lookup the key using built-in associative memory (parameterized size, default 16 entries) or using the LLID directly as an index

Support for Galois Counter Mode Encryption and authentication (GCM), Galois Message Authentication (GMAC)

Flow-through design

Test bench provided

IEEE 802.1ae (MACsec) Security Processor Core

Sample software for 802.1X-2010 (a.k.a. 802.1af, KEYsec, 802.1x-REV) key agreement (MKA) is provided

Deliverables include test benches and optional NIST algorithm validation

Applications

- WLAN 802.1ae MACsec
- RFC 4869

IEEE 802.1ae (MACsec) Security Processor Core

Symbol

IEEE 802.1ae (MACsec) Security Processor Core

Pin Description

Name	Туре	Description			
Generic					
clk	Input	Core clock signal			
rst	Input	Core reset signal			
cen	Input	Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored.			
start	Input	HIGH level starts the core operation			
Configuration. The signals in this group typically have constant values during the core operation					
encrypt	Input	When HIGH, core is encrypting, when LOW core is decrypting			
offset[1:0]	Input	Confidentiality offset:			
		• 00 – 0 bytes			
		• 01 – 30 bytes			
		• 10 – 50 bytes			
PNmax[31:0]	Input	Threshold for PN exhaustion. When PN for an SA > PNmax, PNexhausted is asserted			
PNwindow[31:0]	Input	Size of the PN window for replay protection			
strict	Input	Strict fame verification. When HIGH, Tx frames for which SC cannot be found are suppressed			
SCrequired	Input	If HIGH, Tx frames will include SCI			
ES	Input	If HIGH, Tx frames will have ES set			
directLLID	Input	If HIGH, LLID number is directy used as an index for the key lookup. If LOW, LLID is translated into key index using built-in associative storage.			
simple	Input	Support for non-MACsec legacy encryption mode			
Packet information. The signals in this group are to be asserted with the first or last word of the packet					
first	Input	Indicates the first word of a new packet on the D interface			
last	Input	Asserted with the last word of the packet			
lsbC[3:0]	Input	Number of valid bytes in the last word			
E	Input	If HIGH, the packet shall be encrypted/decrypted			
С	Input	If HIGH, the packet shall be authenticated			
llid[14:0]	Input	LLID of the packet			
CPU interface					
mpA[9:0]	Input	Address			

IEEE 802.1ae (MACsec) Security Processor Core

Name	Туре	Description				
mpD[31:0]	Input	Write data				
mpQ[31:0]	Output	Read data				
mpRead	Input	When HIGH, read operation				
mpWrite	Input	When HIGH, write operation				
mpDvalid	Output	When HIGH, valid data are available on the RD bus				
mpQready	Output	When HIGH, CPU can write to the WD bus				
Datapath						
D[127:0]	Input	Input packet data: additional authenticated data (AAD, A), followed by the plain or cipher text				
Dvalid	Input	When high, data on the D bus is valid				
Dready	Output	When HIGH, core is ready to accept next data word on the D bus				
Q[127:0]	Output	Output encrypted or decrypted packet				
Qvalid	Output	When high, data on the Q bus is valid				
Qready	Input	When HIGH, external circuitry is ready to accept next data word on the Q bus				
Completion signals. Asserted after the packet processing						
done	Output	HIGH when data processing is completed, gate for the rest of completion signals				
PNexhausted	Output	On Tx: PN number for the last packet is too high, time to re-key				
Conly	Output	On Rx: The packet had C flag set, and E clear. These packets require KaY processing				
noSecTag	Output	On Rx: The packet had no SecTag field (not a MACsec packet)				
SCunknown	Output	On Rx or Tx: Unable to locate an SC for the packet				
packetInvalid	Output	On Rx: Packet is not a proper MACsec frame				
packetLate	Output	On Rx: Packet PN is outside the PN window				
ICVmismatch	Output	On Rx: Packet authentication failed				
Memory interfaces						
memSA		SA storage. For N SA, a single-port memory of 3N x 128 bits				
memStat		(Only for statistics option) Statistics storage. For N SA, a single port memory of 12Nx64 bits				

Function Description

The MSP1 implementation fully supports the IEEE 802.1ae (MACsec) algorithm for 128-bit bit keys, including AES support in Galois Counter Mode (GCM) per NIST publication SP800-38D http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

The core is designed for flow-through operation. MSP1 supports encryption and decryption modes (encrypt-only and decrypt-only options are available.

Tx Processing

On encryption, for each frame the core:

- Obtains the SC index from the LLID and looks up the current SA key
- Inserts the SecTag, including the PN and an optional SCI
- Encrypts and authenticates the frame, based on the values on the E and C inputs
- Appends the ICV tag to the packets
- Updates the PN
- Updates the statistics counters

Rx Processing

On decryption, for each frame the core:

- Obtains the SC index from the LLID and looks up the current SA key
- Allows pass-through fro KaY frames
- Validates the SecTag and SCI, if present
- Checks that the packet number PN is within the PN window
- Decrypts the frame, if encrypted
- Calculates the ICV tag, if the frame is authenticated, and compares to the one in the frame
- Removes the ICV tag, appended to the frame
- Updates the PN window
- Updates the statistics counters

Implementation Results

Area Utilization and Performance

Representative area/resources figures are shown below.

Technology	Area / Resources	Frequency	Throughput
TSMC 65 nm G+	180K gates	250 MHz	16 Gbps

Export Permits

The core can be a subject of the US export control. It is the customer's responsibility to check with relevant authorities regarding the re-export of equipment containing the AES encryption technology. See the IP Cores, Inc. licensing basics page, <u>http://ipcores.com/exportinformation.htm</u>, for links to US government sites and more details.

Deliverables

HDL Source Licenses

- Synthesizable Verilog RTL source code
- Testbench (self-checking)
- Vectors for testbenches
- Expected results
- User Documentation
- Optional GCMVS NIST validation

Netlist Licenses

- Post-synthesis EDIF
- Testbench (self-checking)
- Vectors for testbenches
- Expected results

Contact Information

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 815-7996 E-mail: <u>info@ipcores.com</u> www.ipcores.com