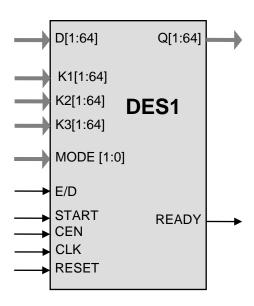
### Ultra-Compact Data Encryption Standard Core

### **General Description**


The DES1 core implements DES and triple DES encryption and decryption in compliance with the NIST Data Encryption Standard. It processes 64-bit blocks, with one, two, or three 56-bit keys.

Basic core is very small (3,000 gates). Enhanced versions are available that support various cipher modes (ECB, CBC, OFB, CFB, CTR.

The design is fully synchronous and available in both source and netlist form. Test bench includes the NIST DES test vectors.

DES1 Core is supplied as portable Verilog (VHDL version available) thus allowing customers to carry out an internal code review to ensure its security.

# **Symbol**



#### **Base Core Features**

Encrypts and decrypts using the DES Block Cipher Algorithm

High throughput: up to 3 Gbps at 750 MHz in 90 nm LV technology

Small size: from 3K ASIC gates for a triple DES core

Satisfies FIPS 46-3 from the US National Institute of Standards and Technology (NIST)

Processes 64-bit data blocks

Employs one to three keys of 56 bits each

Completely self-contained: does not require external memory

Available as fully functional and synthesizable Verilog, or as a netlist for popular programmable devices and ASIC libraries

Deliverables include test benches

### **Applications**

- Secure mobile phone communications
- Secure RFID
- Secure Smart Cards
- Secure financial transactions



# Ultra-Compact Data Encryption Standard Core

# **Pin Description**

| Name      | Туре   | Description                                                                                              |  |
|-----------|--------|----------------------------------------------------------------------------------------------------------|--|
| CLK       | Input  | Core clock signal                                                                                        |  |
| RESET     | Input  | Core reset signal                                                                                        |  |
| CEN       | Input  | Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored. |  |
| START     | Input  | When goes HIGH, a cryptographic operation is started                                                     |  |
| E/D       | Input  | Encrypt (1) / Decrypt (0)                                                                                |  |
| MODE[1:0] | Input  | DES mode 0 – Single DES 1 – Double DES 2 – Triple DES                                                    |  |
| READY     | Output | Output data ready and valid                                                                              |  |
| K1[1:64]  | Input  | First Encryption Key                                                                                     |  |
| K2[1:64]  | Input  | Second Encryption Key (used only in Double or Triple mode)                                               |  |
| K3[1:64]  | Input  | Third Encryption Key (used only in Triple mode)                                                          |  |
| D[1:64]   | Input  | Input Plain or Cipher Text Data                                                                          |  |
| Q[1:64]   | Output | Output Cipher or Plain Text Data                                                                         |  |

# **Function Description**

A DES encryption operation transforms a 64-bit data block into a block of the same size. The encryption key size is 56 bits, with one to three keys used. The block performs DES encryption as defined by NIST in FIPS 46-3.

## DES<sub>1</sub>

# Ultra-Compact Data Encryption Standard Core

#### Operation

A rising input on the START port triggers the beginning of a cryptographic operation on the data D, using the KEY as key. The core then starts to process the state according to the DES algorithm.

When all the rounds are completed, the READY signal is raised and the encrypted data is available on the output.

It is possible to start a new cryptographic operation as soon as the data from the previous one is output. A cryptographic operation can be aborted at any time by lowering the START signal for at least one clock cycle.

The core is fully pipelined. Loading of the new plain/cipher text data and key can be combined with outputting cipher/plain text data from the previous operation.

New key can be used for each cryptographic operation. The absence of gaps allows sustaining the throughput of 4/2/1.33 bits per clock for DES / 2DES / 3DES correspondingly.



# Ultra-Compact Data Encryption Standard Core

## Implementation Details

Representative synthesis results are shown below.

| Technology  | Max Frequency | Area        | DES Throughput | 3DES Throughput |
|-------------|---------------|-------------|----------------|-----------------|
| TSMC 130 nm | 234 MHz       | 3,117 gates | 936 Mbit/s     | 312 Mbit/s      |
| TSMC 130 nm | 512 MHz       | 4,482 gates | 2,048 Mbit/s   | 684 Mbit/s      |
| TSMC 90 nm  | 358 MHz       | 3,192 gates | 1.4 Gbit/s     | 477 Mbit/s      |
| TSMC 90 nm  | 789 MHz       | 5,090 gates | 3.15 Gbit/s    | 1 Gbit/s        |

### **Export Permits**

See the IP Cores, Inc. licensing basics page, <a href="http://ipcores.com/export\_licensing.htm">http://ipcores.com/export\_licensing.htm</a>, for links to US government sites and more details.

#### **Deliverables**

#### **HDL Source Licenses**

- Synthesizable Verilog RTL source code
- · Testbench (self-checking)
- Test vectors
- · Expected results
- User Documentation

### **Contact Information**

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 814-0205 E-mail: info@ipcores.com

www.ipcores.com

#### **Netlist Licenses**

- · Post-synthesis EDIF
- · Testbench (self-checking)
- Test vectors
- · Expected results